
340 S P A C E - G R O U P  S Y M M E T R Y  O F  A T R I P L E  P R O D U C T  

(o) 
Y type: cos 2n(0  + 0 + 0) 

because h~ R a + h 2 R ~ + h 3 R ~ = 0 

cos 2zc( 5 + ½ + O) 

because h l R  2 + h2R 2 + haR2 = 0 

cos 2n(¼ + ¼ + 5) 

b e c a u s e  h l R  3 + h2R 3 + h3R 3 = 0 

cos 2 n ( ]  + ~] + ½) 

because haR 4 + h 2R 4 + h 3R4 = 0 

cos 2n(0  + ~ + 0) 

because h~R~ + hER 4 + h3R 2 = 0 

cos 2n(  5 + ¼ + 0) 

because h~R 2 + h z R  3 + h3Rt = 0 

cos 2n(¼ + 0 + 5) 

because h~ R a + h2 R ~ + b 3 R4 = 0 

cos 2 n ( ]  + 5 + 5) 

because h~R 4 + h2R2 + h3R3 = 0. 

Therefore, ( A ) =  0" 3 0"2 3/2 4-~(4 + 0 ) =  O" 3 0.2 3/2. 
For  the calculation of  ( B )  the same contributions 

can be used with the cosines replaced by sines, so 

( B )  = 0" 3 0.23,2 4-1(0  _ 4) = -0"3 e f  3/2. 

F rom (18) and (20) the most  probable phase for this 
triple product  in P4~ appears  to be 

q =  a r c t a n [ ( B ) / ( A ) ]  = - 4 5  ° 

References 

BERTAUT, E. F. (1959a). Acta Cryst. 12, 541-549. 
BERTAUT, E. F. (1959b). Acta Cryst. 12, 570-574. 
BERTAU'r, E. F. & WASER, J. (1957). Acta Cryst. 10, 606-607. 
COCHRAN, W. & WOOLFSON, M. M. (1955). Aeta Cryst. 8, 1-12. 
GIACOVAZZO, C. (1974a). Acta Cryst. A30, 626-630. 
GIACOVAZZO, C. (1974b). Acta Cryst. A30, 631-634. 
GIACOVAZZO, C. (1977). Acta Cryst. A33, 933-944. 
G1ACOVAZZO, C. (1980). Direct Methods in Crystallography, p. 

286. London: Academic Press. 
HEINERMAN, J. J. L., KRABBENDAM, H. & KROON, J. (1977). Acta 

Cryst. A33, 873-878. 
HEINERMAN, J. J. L., KRABBENDAM, H., KROON, J. & SPEK, A. L. 

(1978). Acta Cryst. A34, 447-450. 
International Tables for X-ray Crystallography (1969). Vol. I. 

Birmingham: Kynoch Press. 
KROON, J., PONTENAGEL, W. M. G. F., KRABBENDAM, H. & 

PEERDEMAN, A. F. (1982). Acta Cr.vst. A38, 170. 

Acta  Cryst. (1983). A39,  340 -347  

Modeling the Phase Change in Crystalline Biphenyl by using a Temperature-Dependent 
Potential* 

BY WILLIAM R. BUSING 

Chemistry  Division, Oak  Ridge Nat ional  Laboratory ,  Oak  Ridge,  Tennessee 37830, USA 

(Received 19 October 1982: accepted 7 December 1982) 

Abstract  

The structures of  two crystalline phases of biphenyl 
(Ct2Hl0) were modeled using an exp-6-1 nonbonded 
potential and (1 - cos 2 (0) terms for the phenyl -phenyl  
conjugation energy. Preliminary calculations were 
made by minimizing the energy of a model starting 
from the 110 K structure,  space group P2t /a ,  with 
planar  molecules. Doubling the b axis and relaxing all 
symmetry  caused the model to t ransform to a struc- 
ture with twisted molecules, space group Pa, es- 
sentially the same as the approximate  structure 

* Research sponsored by the Division of Materials Sciences. 
Office of Basic Energy Sciences. US Department of Energy. ttndcr 
contract W-7405-eng-26 with the Union Carbide Corporation. 

reported from neutron diffraction studies at 2 2 - K .  
Increasing the contribution of the conjugation energy 
reversed the t ransformat ion,  and calculations show that 
the potential that produces planar  molecules in the 
crystal predicts twisted molecules in the gas phase, in 
agreement with experiment. A new temperature-de- 
pendent potential is described in which the nonbonded 
terms are modified according to the thermal motions of 
the atoms involved. Motion parallel to the interaction 
vector tends to push atoms apart ,  whereas motion 
perpendicular to it permits their mean positions to get 
closer together. Ways  of  combining the motions of the 
two atoms involved are considered. This new potential 
was applied to biphenyl to calculate successfully the 
observed unit-cell volumes and tlaermal expansion. The 
model reproduces the torsion angles in the 22 K 
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structure, and increasing temperature produces the 
experimental phase change, although the predicted 
transition temperature is higher than that observed. 

Introduction 

The molecular geometry of biphenyl, C 6 H s - C 6 H s ,  has 
been a source of considerable interest for a long time. 
Electron diffraction studies (Karle & Brockway, 1944; 
Bastiansen, 1949; Almenningen & Bastiansen, 1958) 
indicate that the molecule in the gas phase is twisted 
with a phenyl-phenyl torsion angle of 42 °. On the 
other hand, e'arly X-ray diffraction studies of the 
crystalline material at room temperature (Hengsten- 
berg & Mark, 1929; Clark & Pickett, 1931; Dhar, 
1932, 1949; Kitaigorodsky, 1946) placed the mole- 
cules on centers of inversion in a monoclinic structure 
(space group P21/a), implying that the molecules must 
be planar, at least on the average. Later precise 
structure determinations (Trotter, 1961; Robertson, 
1961; Hargreaves & Rizvi, 1962) confirmed this 
symmetry and appeared to rule out a disordered 
arrangement of twisted molecules, indicating that 
biphenyl really is planar in the crystal. More recently, 
this structure has been verified by further complete 
X-ray studies at 110 and 293 K (Charbonneau & 
Delugeard, 1976, 1977). This work included careful 
refinement of the thermal-motion parameters at these 
temperatures and showed that there is a large com- 
ponent of librational motion about the long molecular 
axis, much of which may be the result of intra- 
molecular torsional vibration. The mean-square am- 
plitude of this libration was found to be approximately 
proportional to the temperature, and this is a further 
indication that it is not the result of a static disorder. 

There had been indications of a low-temperature 
phase transition in biphenyl from EPR and ENDOR 
studies (Brenner, Hutchison & Kemple, 1974) and 
also from Rar0an spectroscopy (Friedman, Kopelman 
& Prasad, 1974; Bree & Edelson, 1977). Then recently 
a single-crystal neutron-diffraction study of the 
deuterated material at 22 K (Cailleau, Baudour & 
Zeyen, 1979) showed superlattice reflections which 
were interpreted as indicating a doubling of the 
high-temperature b axis. The structure was refined 
assuming space group Pa, four molecules per cell, 
yielding values of 10.2 ° for the magnitudes of the 
phenyl-phenyl torsion angles in two kinds of non- 
equivalent molecules. Later the low-temperature 
neutron diffraction experiment was repeated at higher 
resolution (Cailleau, Moussa & Mons, 1979), showing 
that this refined structure is only an approximation to 
the true structure. Instead of a b axis that is exactly 
doubled, the crystal has incommensurate modulations 
in both the b* and a* directions below 38 K. The 
modulation in the a* direction disappears below 

another transition at 21 K. The two transitions have 
now been observed by Raman spectroscopy (Bree & 
Edelson, 1978) and by heat capacity measurements 
(Atake & Chihara, 1980). 

The origins of these phenomena can be understood 
qualitatively in terms of the intramolecular torsion 
potential plotted as a solid curve in Fig. 1. This consists 
primarily of two terms: the nonbonded interaction, W u, 
and the conjugation energy, W .  W u arises mostly 
from the repulsion of the ortho hydrogen atoms and 
has a maximum at 0 ° and a minimum at 90 ° . Wo 
comes from the partial-double-bond character of the 
phenyl-phenyl link, which tends to make the molecule 
planar, and has a minimum at 0 ° and a maximum at 
90 °. The sum of these terms, W, is a rather flat curve 
with maxima at both 0 and 90 ° and a shallow 
minimum between these extremes. A torsion angle of 
42 ° is then reasonable for the gas-phase molecule. In 
the crystal, on the other hand, if the molecule can gain 
only a few kJ mol -~ in packing energy by adopting a 
zero torsion angle, then this will be the favored 
geometry. Nonbonded packing forces acting on the 
molecules may be expected to depend on their thermal 
motion, so the existence of phase changes is not 
surprising. The purpose of this paper is to pursue this 
model quantitatively and to show that it predicts the 
approximate low-temperature Pa structure and its 
transition to the P21/a arrangement with increasing 
temperature. Modeling of the incommensurate struc- 
ture will not be attempted at this time. 

There have been many theoretical publications on 
biphenyl including several computations of the con- 
jugation energy for the isolated molecule (Polansky, 
1963; Fischer-Hjalmars, 1963; Casalone, Mariani, 
Mugnoli & Simonetta, 1968; Dewar & Harget, 1970; 
Alml6f, 1974) and some crystal packing calculations 
(Casalone, Mariani, Mugnoli & Simonetta, 1968; 
Brock, 1979). More recently some lattice-dynamics 

0 3o 60 90 izo 150 180 
Torsion angle, ~o (deg) 

Fig. 1. Intramolecular torsion potential for an isolated molecule of 
biphenyl. W u is the contribution from non-bonded interactions, 
W is the conjugation energy, and W is the sum of these. The 
three curves (solid, dashed, and dotted) for W,, and W show the 
effect of increasing the conjugation energy parameter, E~,. 
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calculations have been made for the high-temperature 
phase, which reveal soft modes related to the phase 
transition (Natkaniec, Bielushkin & Wasiutynski, 
1981; Takeuchi, Suzuki, Dianoux & Allen, 1981), and 
the mean-square vibrational amplitudes have also been 
obtained (Bonadeo & Burgos, 1982). 

Preliminary calculations 

In order to understand these observed changes in the 
conformation of the biphenyl molecule, potential- 
energy models have been constructed for the gas and 
crystalline phases. Some preliminary results will be 
described first, and then work with an improved model 
will be presented. All calculations were made with the 
program WMIN (Busing, 1981), and the methods used 
have been described in detail previously (Busing, 1982). 

The energy of any model of given geometry is 
calculated as a sum of two kinds of potential-energy 
terms. Each nonbonded atom-atom interaction, both 
intermolecular and intramolecular, contributes a term 

V(r) = - A  ij r-6 + Bii exp (-Cij  r) + qi qj r-k (1) 

Here r is the interatomic distance, A i j, Btj, and C U are 
coefficients for each chemical kind of atom pair, and qt 
is the Coulomb charge on each kind of atom. Values of 
these coefficients were taken from Williams & Starr 
(1977) and are listed in Table 1. Justification for the 
selection of this potential has been presented pre- 
viously (Busing, 1982). 

The intramolecular conjugation energy is computed 
as  

V(tp) = (E,J4) (1 - c o s  2 tp), (2) 

where E~ is a parameter of the potential, and the divisor 

Table 1. Potential parameters used for modeling 
biphenyl 

Energies are in kJ mol -I, lengths in A, and charges in electrons. The 

Coulomb term in equation (1) is multiplied by 1389.4 to obtain 

kJ mol-k 

(a) Basic nonbonded potential (Williams & Starr, 1977) 

H-H C-H C--C 
A 136 573 2414 
B 11677 65485 367250 
C 3.74 3.67 3.60 
qn 0.153 

(b) Parameters of the final temperature-dependent potential. The 
k's are the correlation coefficients of equation (13), and primed 
symbols refer to intramolecular contacts. 

E 33.5 k: 0.803 
u. 0.055 k,,. 0-803 

k'. 0.803 
k :, -1.000 

of 4 compensates for the fact that a term is included for 
each of the four torsion angles ~0 about a phenyl-phenyl 
link. E,~ was initially set at 36.3 kJ mo1-1, a value 
determined from the crystal structure of 1,3,5-tri- 
phenylbenzene (Busing, 1982). 

In a first calculation, the energy of the high- 
temperature crystal structure was minimized, starting 
from the experimental structure at 110 K (Charbon- 
neau & Delugeard, 1976) and maintaining the sym- 
metry of space group P21/a. Individual molecules were 
held rigid and essentially planar with carbon atoms in 
the experimental geometry. Hydrogen positions were 
calculated as described before (Busing, 1982) with 
C - H  distances of 1.02 A as required by the non- 
bonded potential (Williams & Starr, 1977). Seven 
structural parameters were adjusted, including three 
rotations of the molecules about the inversion centers 
and the four parameters of the monoclinic lattice. The 
observed and calculated parameters are listed in Table 

Table 2. Observed (Charbonneau & Delugeard, 1976, 1977) and calculated crystal-structure parameters for 

l l0K 
O 

b 
¢ 

/; 
V/2 
t!  

293 K 
12 

b 
C 

I//2 
tt  

biphenyl at 110 and 293 K 
Lengths are in A, angles in o; V is the cell volume, and 0 is the overall molecular rotation. 

Preliminary model Temperature-dependent model 

Obs Calc Calc-Obs % Calc Calc-Obs % 

7.82 
5.58 
9.44 
94.6 

205.3 
0 

8.12 
5.63 
9-51 

95.1 
216.5 

0 

8.06 0.24 3.1 8.13 0.31 4.0 
5.49 -0.09 - 1.6 5.44 --0.14 --2.5 
9.30 -0.14 - I  .5 9.29 -0.15 -1.6 

90.3 -4.3 90.8 -3.8 
205.8 0.5 0.2 205.4 0.1 0.0 

4.1 4.1 3.4 3.4 

8.31 0.19 2.3 
5.55 --0.08 -1-4 
9.38 --0.13 --1-4 

92.2 --2.9 
216.1 --0.4 --0.2 

2.7 2.7 
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2, which shows that the agreement is slightly better 
than that obtained by Brock (1979), who used an 
earlier version of the nonbonded potential. 

In order to determine what structure of lower 
symmetry would be predicted by this model, a further 
calculation was made starting with the above P2~/a 
arrangement. On the basis of the reported structure at 
22 K (Cailleau, Baudour & Zeyen, 1979), the crystal b 
axis was doubled and all symmetry was relaxed so that 
the structure was treated as triclinic with four in- 
dependent molecules in the doubled cell. Each mole- 
cule was treated as two rigid phenyl groups with one 
internal degree of freedom, the rotation about the 
phenyl-phenyl link. Although the ability of the ortho 
hydrogens to bend away from each other may be 
important, this additional freedom was not included in 
the model. The variables then included the internal 
rotation plus three overall rotations and three trans- 
lations for each of the four molecules. With the six 
triclinic lattice parameters these made a total of 34 
variables. In attempting to minimize the energy, 
program WMIN reports the eigenvalues of the Hessian 
matrix of second derivatives of the energy with respect 
to these variables. Of the 34 eigenvalues, three were 
zero, as expected, corresponding to three redundant 
translations. Two other eigenvalues were negative, 
indicating that the starting structure was unstable, i.e. 
that the variables were at a saddle point in the energy 
function. Examination of the corresponding eigen- 
vectors showed that these instabilities involved internal 
twisting of the molecules. 

The structure was then deliberately distorted in the 
direction of one of these eigenvalues and varied until a 
new stable energy minimum was reached. Although the 
lattice angles a and ), wandered during the search, they 
returned to 90 ° at convergence. Inspection of the 
resulting arrangement showed that pairs of molecules 
were equivalent within round-off error, that the 
symmetry was that of space group Pa, and that, after a 
simple coordinate transformation, the molecular posi- 
tions were close to those of the reported 22 K structure. 

The two non-equivalent internal torsion angles, how- 
ever, had magnitudes of 21.3 and 20.4 ° rather than the 
10.2 ° observed for both angles. 

At this point, in order to save computing time, the 
structure was constrained to the symmetry of space 
group Pa with two molecules in the asymmetric unit. In 
this polar space group the x and z translations of one 
molecule are irrelevant, so the parameters adjusted 
were four molecular translations, six molecular ro- 
tations, two internal rotations, and four lattice par- 
ameters, for a total of 16. Increasing the conjuga- 
tion-energy parameter Eo to 53.5 kJ mo1-1 reduced the 
internal torsion angles in the minimum-energy model to 
10.3 and 10.2, very close to the observed values. Table 
3 compares some parameters of this model with the 
reported 22 K structure and shows that the agreement 
is reasonably good. 

In a final calculation the conjugation-energy par- 
ameter E,~ was increased to 65.3 kJ mo1-1, and the 
energy was again minimized with respect to the 16 
variables of the Pa model. The result is a structure with 
planar molecules in all respects identical with the P21/a 
model of the first calculation described above. Thus, it 
has been demonstrated that by increasing the im- 
portance of the conjugation energy with respect to the 
nonbonded interactions, the model can be made to 
undergo a phase change to the high-temperature form. 

Fig. 1 shows curves of the intramolecular torsion 
potential I4/" in the isolated biphenyl molecule cal- 
culated from the potential-energy expressions used 
above. The solid curve was made with the initial value 
of E~, the dashed one is based on the E,~ that produced 
the torsion angles observed at 22 K, and the dotted 
curve was computed from the E,~ that caused the model 
to change to the high-temperature form. Even with this 
largest value of the conjugation energy, the curve for 
the isolated molecule has a minimum at a tp of about 
25 °. Thus these model calculations demonstrate that a 
molecule which would be twisted in the gas phase may 
indeed become planar in the crystal because of the 
effects of intermolecular packing forces. 

Table 3. Observed (Cailleau, Baudour & Zeyen, 1979) and calculated erystal-structure parameters for biphenyl 
at 22 K 

Lengths are in/~,  angles in o; x is the overall molecular  t ranslat ion;/9 is the overall molecular  rotation. 

Prel iminary model Tempera ture -dependent  model 

Obs C alc C a l c - O b s  % Cale  Ca lc - -Obs  

a 7.77 8.15 0.38 4.9 8.08 0.31 
b 11.14 10.90 -0 .24  - 2 . 2  10.78 -0 .36  
c 9.44 9.32 - 0 . 1 2  - 1 . 3  9.27 -0 -17  
,6 93.7 90.8 - 2 . 9  90.7 - 3 . 0  
11"/4 203.8 207.0 3.2 1.6 201.8 - 2 . 0  
x I 0 0.02 0-02 0-02 0.02 
x2 0 0.09 0.09 0.09 0.09 
0~ 0 2.7 2.7 2.7 2.7 
02 0 2.6 2.6 2.7 2.7 
~o E - 1 0 . 2  -10 .2  0-0 - 1 0 . 0  0.2 
~02 10.2 10.3 0. I 10.1 -0 .1  

% 

4.0 
--3.2 
--1.8 

--1.0 
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Introducing temperature effects 

In spite of their success, the above model calculations 
must be regarded as somewhat artificial. A phase 
change results from a change in temperature, but 
temperature would not be expected to affect the 
conjugation-energy term. On the other hand, tem- 
perature changes can be interpreted as modifying the 
average contribution of the nonbonded terms, and this 
suggests that one way of introducing temperature into 
the model would be by means of a temperature- 
dependent nonbonded potential. 

Such potentials have been described previously. 
Amoros & Bork (1967) proposed a potential with 
parameters that depend on the temperature in a way 
which they determined empirically from crystal struc- 
tures measured at several temperatures. A more 
theoretical approach was taken by Williams (1972), 
who derived a potential based on the anisotropic 
thermal motion observed for atoms in the crystal. 
Nonbonded terms were modified by increasing the 
repulsion coefficient B u of (1) in a way which depends 
on the components of thermal motion parallel to the 
atom-atom interaction vector. 

Experimental rigid-body thermal-motion coefficients 
are available for biphenyl at 293 and 110 K (Charbon- 
neau & Delugeard, 1977). The translation and libra- 
tion matrices, T and L, are nearly diagonal, and for the 
present work the off-diagonal terms were omitted. To 
obtain the thermal motion at lower temperatures the 
methods described by Cruickshank (1956) were used, 
his equations (1) for T and (5) for L. In general, the 
low-temperature matrices obtained from the 293 K 
data are similar to, but not identical with, those from 
the 110 K data, and averages of the two results were 
used. Table 4 lists the thermal-motion matrices for five 
temperatures, and Fig. 2 shows the thermal-motion 
ellipsoids at 293 and at 22 K. For the low-temperature 
models with twisted molecules it was assumed that 
these rigid-body matrices describe the thermal motion 
of each individual phenyl segment. The S matrix, which 
describes screw motion, is zero by symmetry in the 

Table 4. Rigid-body thermal motion for  crystalline 
biphenyl 

Translation T is in A 2 (x 105); libration L is in rad 2 (x 105). The 
origin is in the center of the phenyl-phenyl link, axis 1 is parallel 

to this link, and axis 2 lies in the phenyl plane. 

TI i 
~2 
~3 
L~ 
L22 
L3.~ 

Experimental 
(Charbonneau & Calculated 
Delugeard, 19 77) (see text) 

293K l l 0 K  80K 4 0 K  22K 

5930 2810 1853 971 605 
4530 2160 1424 756 485 
4030 1330 1054 571 381 
3330 1390 977 524 346 
260 70 64 40 32 
350 110 91 52 38 

high-temperature crystal and was assumed to be zero at 
low temperature also. 

In further calculations Williams's temperature-de- 
pendent potential was used with these rigid-body 
thermal-motion matrices to model the biphenyl crystal 
at 22, 110, and 293 K. One goal of this work was to 
reproduce the unit-cell volumes and thermal expansion 
of the material, and for this purpose the model was 
reasonably successful. A second aim was to reproduce 
the internal torsion angle tp at 22 K and to show that 
this angle decreases with increasing temperature, thus 
producing a phase change. For that purpose, all models 
with this potential were unsuccessful; the torsion angle 
~0 always increased with temperature. In retrospect it is 
now clear that a potential based only on the components 
of thermal motion parallel to the interaction vector can 
never be expected to produce this phase change. This 
point will be discussed again below. 

A new temperature-dependent nonbonded potential 

A new nonbonded potential will now be described that 
depends on the known thermal-motion coefficients of 
the atoms, but which differs from the potential of 
Williams in several ways. 

Thermal motion parallel to r 

Consider a typical exp-6 potential 

V(r) = - A r  -6 + B exp ( -Cr) ,  (3) 

and assume that r is described by a Gaussian 
distribution 

p(r) = (2nz2) -1/2 exp [ - ( r -  ro)2/2z2], (4) 

(a) 

(b) 

Fig. 2. Rigid-body thermal motion in crystalline biphenyl re- 
presented by 50% probability ellipsoids (a) at 293 K and (b) at 
22 K. 
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where z 2 is the mean-square deviation of r from a 
central value r 0. Integrating to average V(r )  over this 
distribution yields 

V ( r  o , z  2) = - A r o 6 [ 1  + 21z 2ro 2 + ...] 

+ B exp (C 2 Z 2 / 2  - -  Cro). (5) 

The integration of the exponential term is exact, but 
that of the inverse powers is approximate,  the first 
omitted term in the brackets being 3 7 8 ( z E r o 2 )  2 o r  

about 4% for z 2 r o  E = 0.01. 
Fig. 3 shows the original potential for a H - H  

interaction, a typical Gaussian distribution in r, and the 
new average potential. It is clear that the principal 
effect of the distribution is to increase the effective 
repulsion radius by C z 2 / 2 .  

T h e r m a l  mot ion  p e r p e n d i c u l a r  to r 

It has been shown by Busing & Levy (1964) that 
thermal motion perpendicular to the vector between 
atoms increases their mean instantaneous separation so 
that 

where 

and 

m 

= (roZ + ~ + y2)1/2 ~_ ro + u, (6) 

u = w2/2ro, (7) 

m m - -  

w E = x 2 + y2. (8) 

(9) 

Substituting ? for r o in (5) produces 

V ( r  o + u, z 2) = - A ( r  o + u) -6 -- 21Az2(ro + u) -s  

+ B exp (C 2 z2 /2  - Cr  o - Cu). 

The net effect of thermal motion perpendicular to the 
interaction vector r 0 is to permit the mean positions of 
the atoms to get closer to each other. This is in contrast 
with the effect of motion parallel to r 0, which tends to 
push atoms apart. 

°t ~o  

r ~  

V(ro,~ 

Fig. 3. A temperature-dependent nonbonded potential. V(r) is the 
exp-6 potential for a H--H interaction; p(r) is a typical Gaussian 
distribution in r; V(r 0, ~) is the new average potential. 

Since W M I N  uses accelerated convergence methods 
(Williams, 1971) to compute the term - A r o  6, it is 
desirable to expand the first two terms of (9) to obtain 

V ( r  o + u, z 2) = - A r o  6 + 6 A u r o  7 - 21A(u 2 + z 2) %8 

+ 56A(u 3 + 3uz 2) %9 

+ B exp (C 2 Z 2 / 2  - -  Cr o - Cu). (10) 

C o m b i n i n g  the mot ions  o f  two a t o m s  

In order to evaluate z 2 and w 2, which describe the 
distribution of an interatomic vector r, it is necessary to 
consider the thermal motions of the two atoms which 
define this vector. Ideally what is needed is the joint 
distribution of the two sets of coordinates, but often 
only the temperature-factor coefficients of the indi- 
vidual atoms are available. In this case it is necessary 
to make assumptions as to the extent of the correlation 
between the motions. It has been shown (Busing & 
Levy, 1964) that if the motions of the two atoms are 
completely uncorrelated then the components of 
mean-sq_u_are displacements for the two atoms, z~, z 2, 
w 2, and w~, should be added. Thus 

z 2 =  z ,  ~ + z~,  

w 2 = w 2 + wE . (11) 

On the other hand, if the motions are highly correlated 
they should be subtracted. 

z 2 = Iz~ - z~ I, 

w2= Iw 2 -  w221. (12) 

Equation (12) describes the 'riding model' of Busing & 
Levy (1964). 

Correlation coefficients, k z and k w, can then be 
defined so that 

z ~ =  (1 - kz) (~, + z~) + k ~ l z ~ -  z~l, 

w~= (1 - k . , ) ( w ~  + w~) + kwlw~, - w~l.  (13) 

From arguments presented by Busing & Levy (1964) it 
can be shown that permissible values of k z or k w range 
from +1 for correlated motion, through 0 for un- 
correlated motion, to - 1  for negatively correlated 
motion of the two atoms. Although there is no basis for 
believing that these coefficients will have the same 
values for all nonbonded interactions in a given crystal, 
it will nevertheless be assumed that they are constant 
for certain classes of these interactions, and these 
coefficients will be adjusted empirically as parameters 
of the model. 

Because the potential of (1) and Table 1 was derived 
for no specific temperature, another empirical con- 
stant, u 0, has been included in (7) to obtain 

u = u o + wE/2ro . (14) 
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This correction term, which is the value of u for no 
thermal motion, will also be used as an energy 
parameter of the model. 

Calcuiating the components of thermal motion 
If T and L are the rigid-body thermal-motion 

matrices for translation and libration, and v i defines the 
position of atom i in the rigid-body Cartesian system, 
then the thermal motion of this atom is given by 
(Johnson, 1970) 

U i = T + A i LA/, (15) 

where 

t ~ /)is --/')i~ 
A i = v i ,  O ~,}.  (16) 

/)t2 --/3i 1 

If I is a unit vector parallel to the interaction vector r 0 
and referred to the rigid-body coordinate system, then 

2 = l r U i l ,  (17) z i 

w~2 = tr Ut - z~.2 (18) 

Certain simplifications can be made when T and L are 
diagonal. 

For calculations with WMIN these quantities are 
computed in a user's subroutine for general potentials. 
The values of z 2 and w 2 for each atom-atom interaction 
are computed only once for each cycle of energy 
minimization and saved for use during that cycle. The 
energy terms are then calculated according to (10). The 
Coulomb terms of (1) are obtained by accelerated 
convergence methods without any modification for 
thermal motion. 

Application to blphenyl 

In applying this new temperature-dependent potential 
to biphenyl the goals were to reproduce thermal 
expansion by fitting the unit-cell volumes as a function 
of temperature, to reproduce the low-temperature 
torsion angles, and to show that these angles decrease 
with increasing temperature, leading to a phase change. 

It was arbitrarily assumed that for intermolecular 
contacts the correlation coefficients for parallel and 
perpendicular motion are equal, k z = k w, and this 
quantity was adjusted together with the zero correc- 
tion u 0 to reproduce the unit-cell volumes at 110 and 
293 K. The energy of the model was minimized for 
space group P21/a using rigid planar molecules, so that 
these results are independent of the values chosen for 
the conjugation parameter E~ and the correlation 
coefficients for intramolecular contacts. The param- 
eters of the potential are listed in Table 1, and the 
resulting structural parameters are given in Table 2. 

The value of the correlation coefficient is 0.803, 
corresponding to high positive correlation, as is to be 
expected if the thermal motion arises largely from 
long-wavelength lattice vibrations. 

To model the 22 K structure, the parallel correlation 
coefficient for intramolecular interactions, k', was set 
to the value determined above for the intermolecular 
coefficients. The correlation coefficient for intramolec- 
ular motion perpendicular to the interaction, on the 
other hand, was chosen as k" = - 1 ,  a value which 
appeared to give the model the best chance of 
reproducing the observed phase change. This negative 
correlation for the important ortho-hydrogen contacts 
implies that the intramolecular torsion vibration makes 
a large contribution to the thermal motion. Using these 
coefficients, the value of E was adjusted to reproduce 
the torsion angles when the energy of the low- 
temperature model (space group Pa) was minimized at 
22 K. Table 1 gives the energy parameters and Table 3 
lists some of the parameters of the model structure, 
which are in reasonable agreement with the experi- 
mental quantities. 

Energies were then minimized for this model at 
temperatures of 40, 80, and 110 K, and values of the 
resulting torsion angles are plotted in Fig. 4. It can be 
seen that the predicted phase change occurs at about 
94 K, somewhat higher than the observed temperature 
of about 40 K (Bree & Edelson, 1977, 1978; Cullick & 
Gerkin, 1977; Atake & Chihara, 1980). 

Conclusions 

It has been shown in preliminary calculations with a 
potential-energy model that when the b axis is doubled 
the high-temperature structure with planar biphenyl 
molecules transforms to the reported low-temperature 
arrangement (space group Pa) with twisted molecules. 
It was further shown that increasing the intramolecular 
conjugation potential causes the model to undergo the 
reverse phase change to the P21/a structure with planar 
molecules, even though the intramolecular potential is 
such that the isolated molecule would be twisted. 

v 

~©- 
t~ . 

[.-, 

" : ' ,  O 
°20 ;o ~ .~ ,6o ~2o 

Temperature (K) 
Fig. 4. Calculated torsion angle, ~0, for crystalline biphenyl (space 

group Pa) as a function of temperature. The predicted transition 
temperature is 94 K; the observed temperature is about 40 K. 
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A new temperature-dependent nonbonded potential 
has been developed, and model calculations using this 
potential reproduce cell volumes and thermal ex- 
pansion. They also produce a phase change with 
increasing temperature, although the predicted tem- 
perature is higher than that observed. This potential 
takes account of thermal motion parallel to the 
a tom-atom interaction, which tends to push atoms 
apart. It also depends on thermal motion perpendi- 
cular to the interaction vector, which permits mean 
atomic positions to get closer to each other. This latter 
effect is of critical importance for the or tho-hydrogen  

contacts in biphenyl. If the thermal motion shown in 
Fig. 2 includes a large contribution from the intra- 
molecular torsional vibration, then at high tempera- 
tures the molecule can be planar, on the average, 
because the mean instantaneous distance between the 
hydrogen atoms (shown as dashed lines in the figure) is 
much larger than the distance between mean atomic 
positions. At low temperatures, on the other hand, the 
thermal motion is much smaller, and the molecules 
must twist to increase the hydrogen-hydrogen 
distances. 

This provides an interpretation of the phase change 
which is approximately equivalent to the concept of a 
double-well potential invoked by others (Baudour, 
Cailleau & Yelon, 1977; Cailleau, Baudour, Meinnel, 
Dworkin, Moussa & Zeyen, 1980). In that description 
the molecule is symmetric when the torsional vibration 
is excited to high-energy levels, but at low temperature 
the energy is less than the barrier height, and the 
molecule becomes twisted. 

Although the cell volumes have been reproduced 
satisfactorily, the agreement for the individual lattice 
constants, as listed in Tables 2 and 3, is not so good as 
might be expected. The calculated a and b parameters 
are too large and too small, respectively, and the 
computed fl angles are generally too small. These 
discrepancies may arise from the principal problem 
with the new potential, namely that it is not clear how 
the distribution of the interaction vector r should be 
obtained from the motions of the two atoms involved. It 
can be hoped that the overall agreement will be 
improved when the required joint distribution can be 
extracted from the results of some of the complete 
lattice-dynamics calculations which are beginning to 
appear (Natkaniec, Bielushkin & Wasiutynski, 1981; 
Takeuchi, Suzuki, Dianoux & Allen, 1981). 
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